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In this article a method is devised for testing for a possible fault in a gate in a
larger switching circuit, that does not require isolating the suspicious gate from
the rest of the circuit. The techniques involve a Boolean difference calculus remi-
niscent of, but not identical to, ordinary difference calculus.

I. Switching Circuits and Gates

A switching circuit f (x;, %, * * * , %) is a realization of
the mapping f|2™ — 2 where 2 is the set of two elements,
ie, 2={0,1}, and 2™ is cartesian products of 2, taken
n times,

7 times

P, S
2m =X 2X - - 2

Mapping f is called either a switching or Boolean func-
tion. Switching circuits are composed of a number of sub-
switching circuits. These elementary switching circuits
often occur in modules and are called gates.

A typical switching circuit is illustrated in Fig. 1. It
happens that this circuit consists only of nand gates. In
terms of its gates the circuit of Fig. 1 is the following set
of five equations:

f= ge&
g =xg
g: =%g (1)
g = X x,u
U = T,X;
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Variables x, x,, x5, x, are called the primary or input vari-
ables to the circuit. The outputs of the gates u, g, g1, 8-
are known as internal or secondary variables, and finally
variable f is the output of the circuit. The bars in Eq. (1)
denote complementation, i.e., if ue2, # = 1@ u where H
is sum, modulo 2.

Suppose f is a switching function of the n binary vari-

ables
X = (X, %z * * *,%n)

and ¢ is an internal variable of the circuit. The depen-
dence of f on both x and u is represented functionally as

y =f(xux) (2)
where x denotes the binary variables x;,x,, - - - ,x,. Nec-
essary and sufficient conditions for f to be a dependent

function of u are well known (Ref. 1).

To illustrate the notion of functional dependence, con-
sider again the circuit of Fig. 1. The output

y=f(g:(x), & (x)) (3)
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Fig. 1. A typical switching circuit

is a dependent function of both function g, (x) and func-
tion g, (x) where x = (x,, x;, %, x,). Similarly (see Eq. 1),

Y = g1 (x1, g (x))
Y2 = 8o (%2, 8 (%)) (4)

are both dependent functions of a primary variable and
of the same gate g(x).

Equations (3) and (4) illustrate functionally another
important concept. This is circuit fan-in and fan-out. Since
g:(x) and g.(x) in (3) “feed” the single gate f, the out-
puts g; and g, are said to fan-in to . In Eq. (4) gates g,
and g, are both fed by the same gate g. Schematically
Fig. 1 thus requires the output lines of g to fan out from
gate g in order to simultaneously feed gates g, and g..
The generalization of the concept of fan-in and fan-out
to n gates is evident.

Il. Faults and Their Detection

Let y = f(x,u(x)) be a function, dependent on an in-
ternal gate variable u (x) where x denotes the set of pri-
mary variables x;,x., + - -, x,. Our purpose is to devise
a test for a possible error or fault in the physical realiza-
tion of gate u.

If a gate such as u can be isolated from the rest of the
circuit f, the testing of u would be a straightforward mat-
ter. However, today a subcircuit u of a digital integrated
circuit usually cannot be disconnected without serious
damage to the overall circuit f.

AssuMPTION A. The only terminals of the circuit f avail-
able for testing are the primary input variables x,, - - - x,

and the output y.

In order to impress both values 0 and 1, respectively,
on u in a reliable manner with test equipment, it is con-
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venient to assume there is only one or no fault in the cir-
cuit making up f. If u is the gate variable to be tested, one
assumes the only possible error in the gates of f resides in
the output of gate u. The above single-fault assumption is
formalized as follows:

AssumpTION B. Let y = f(x,u(x)) be a switching func-
tion dependent on gate function u(x) where

X=(%,%, * %)

If gate u is being tested, there is only one possible error
or fault in the gates which physically compose f, and that
is at the output of gate u.

Now consider the possible errors or faults which can
occur at the output of gate u. The types of error possible
in u are perhaps best illustrated by the symbol transition
diagram of Shannon. Such a diagram is shown in Fig. 2.
In Fig. 2 impressed values and received values correspond
to transmitted symbols and received symbols, respectively,
in the usual Shannon diagram for a binary (or two symbol)
channel. u (x) is the desired value or the value which the
tester endeavored to impress upon the gate u, whereas
u® (x) is the actual value at the output of gate u as a
function of input configuration, xe2". If one could dis-
connect the output of gate v from the rest of the circuit f
and connect the output of gate u to a tester, then uF (x)
would be the actual value received by the tester from
gate u.

If the symbol or value k is impressed on gate u, the
probability that the same value is received is given by g
where k =0, 1. The probability is px =1 — g that the
wrong or opposite symbol is received.

In general, the probabilities in Fig. 2 allow for the pos-
sibility of intermittent errors. We are interested for the
present only in the static or permanent type of error. These
are the probability one type errors. Digital computer
designers denote such errors as faults.
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Fig. 2. Shannon error diagram for v
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All possible probability one type of errors or faults are
illustrated in Fig. 3. The type I fault is u stuck-at-zero.
Type II fault is the u stuck-at-one. Finally, the type III
error is uw complemented.

Type I1I type errors occur quite frequently in final LSI
(large scale integrated) circuit layouts. The bar for com-
plementation is often omitted or inserted erroneously dur-
ing the final conversion of switching circuit equations to
planar circuits. Type I and II faults occur more usually
as electronic faults.

-

We can now prove the following theorem:

TueOREM 1. Let y = f(x,u (x)) be a switching function
dependent on a gate function u (x) where x=(x, %, " * , Xn)-
Under Assumptions A and B a single fault in u of any of
the three types I, II, or I1I of Fig. 3 can be detected if and
only if there exist two input test configurations x° and x*
in 2" such that

(1) u(x¥) =k

(2) f (= u(xF) #f (&, 0 (x¥))
for both k=0 and k = 1.

(=4
c

TYPE |
STUCK-AT-ZERO
(s-a=0)

<o

TYPE {
STUCK-AT-OINE
(s-a-1)

TYPE HI
COMPLEMENTED
VARIABLE

(1)

1 1

Fig. 3. Three types of faults
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Proof: Suppose x° and x* exist such that (1) and (2) are
true and v has a fault, e.g., a type I fault. From Fig. 3
we have

for a type I fault. By Assumptions A and B only the out-
put y = f of the circuit is observable and the observed
value of y is

y® (x) = f(x, u* (x)) (5)

for input configuration xe2”. If x° and x* are test config-
urations, it is apparent that a fault in u can be detected
if and only if

y* () #y () (6)

for either k = 0 or k = 1. Substituting the above value of
u® (x*) into Eq. (5) yields

y* () = f (& u(xY)

which is not equal to y (x') = f (x', u (x*)). Thus by Eq. (6)
any type I type error can be detected if 2% exist such that
(1) and (2) are true for k = 0 and 1. In a similar fashion
it can be shown that type II and III errors will be detected
and sufficiency has been shown.

It is evident that condition (1) is necessary. By Fig. 3
for a type I error in u

and for a type II type error in u
u® (x°) = U (x°)

)
uf (21} = u (x*)
Hence for a type I type error in
y* () = f (=%, B (x°))
y* (1) = f (= u(x))
and for a type II error
y® () = f (=% 0 (x°))
y* (x') = f (2}, u(xh)
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Thus to detect both a type I and II error it is necessary
that both

et @ (xt) #f (2, u (21))

and
(2% @ (x%)) £ f (20 u (%))

respectively. Thus the necessity for conditions (1) and (2)
is established and the theorem is proved.

Condition (2) of the above theorem is true if and only if
Af (x,u) = f (=, u (o) DFf (¢, u(xh) =1 (7

where @ denotes sum, modulo 2, or what is often called
the exclusive or operation of Boolean algebra. The left
side of Eq. (7), the expression f(x,u (x)) Df (x, u (x)), is
called the partial Boolean difference with respect to u
and is denoted by the suggestive notation, Af (x,u). The
partial Boolean difference was first defined and used by
the author (Ref. 2) in analyzing certain error-correcting
codes. Aker’s in Ref. 1 develops some of the calculus and
Boolean functional analysis associated with the partial
Boolean difference.

In terms of the partial Boolean difference, Theorem 1
can be restated as follows:

THEOREM 2. Let y = f(x,u(x)) be a switching function
dependent on a gate function u (x) where x=(x,, x,.* - - , x).
Under assumptions A and B a single fault u of any of
types 1, 11, or 111 of Fig. 3 can be detected if and only if
there exists two input test configurations x° and x' in 2»
such that

(1) u(x*) =k
@) 8f (& u (@) =1
for both k =0 and k = 1.

Section 111 will be devoted to the development of a dif-
ference calculus for Boolean algebra which is quite anal-
ogous to the classical difference or differential calculus
of many real variables. The chain rules of this calculus
simplify the computation of the partial difference required
in Theorem 2, making possible the automatic generation
of test configurations for all gates of a circuit. As stated,
Theorem 2 formalizes rather sufficiently a number of
related developments by other authors (Refs. 3-5).
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lll. Boolean Difference Calculus

To develop a calculus for the Boolean difference, recall
first the fundamental expansion formula of Boolean alge-
bra. If x€2 and f (x) is the mapping f |2 -> 2, then

fx) = FO)TBF (D)= (8)
= FO) B () BF(0)]x
= FO)Daf|, ,-x

where Af|.., denotes the difference with respect to x,
evaluated at x = 0. The second and third forms of Eq. (8)
can be recognized as Newton’s interpolation formula over
the field of two elements, e.g., Ref. 6, pp. 66-70.

The partial Boolean difference was defined by the left
side of Eq. (7) in Section II. We now determine some ele-
mentary rules and properties of the Boolean difference.
Suppose f (1) and g (u) are mappings of 2 into 2.

Ruee L &f (u) =f(1)Df(0)

For this rule use definition (7) and formula (8).
%f =fu)Df@),fu) =FfO0)u@®f(1)i. The rule follows
fromuPa =1.

RuLE IL. A is a “linear” operator.

AfDe) =afDag

This assertion is immediate by definition and the asso-
ciativity of addition, modulo 2.

RuLe III. If ae2 is a constant with respect to variable u,
Aa = 0.

RuLe IV. Af+g = (af)- g B f+(22) P (af) - (Ag).
Rule III is immediate and Rule IV can be verified
directly by calculation. Rule IV can be generalized induc-

tively to a product of n terms.

The following rules of differencing are direct conse-
quences of Rules I through IV.

RULEV. Af = Af
This follows from Rules II and III.

RuLE VL %f = Af
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RuLk VIL Let u,,u,, - - * ,u, be n binary variables, i.e.,
variables with domain 2, then

A(ul.u2-u3 PR un) =y, Uy -

g

fork=12 ---,n.

T Ug-y *Ugsr *Ugsz © " 7 Unp

Rules VI and VII are immediate by Rule I.

An important tool for computing the partial differences,
needed in Theorem 2, is provided by the partial difference
“chain rule” of the next theorem.

-

THEOREM 3. Letf,g,, s, * * * , 2k and u be Boolean func-
tions of n binary variables x,,x,, - - -, x,. Suppose func-
tion f is dependent on functions g, 8., ' * * , 8, ond in
turn functions g,, g, * * - , & are dependent on function u.
Then the partial Boolean difference with respect to u satis-

fies the chain rule,
%f = ﬁf'%f@ é}f%gz@ T @ﬁf’%gk

D A" 480D 00 frogdaD
@ A(?)fouAgk.%gk®...

Ik-19k
AR CAD A A
®91,§2"'0kf ugl ug2 ugk
where
A(m)
Gip i, "G

n

denotes the mth partial difference with respect to func-
tions g;, g, * * * &i,

Proof: A proof for this theorem is provided here only for
k = 2. A similar proof can be developed for arbitrary k.
For more details see Ref. 5.

For this case f is functionally of the form f = f(g, (u),
g: (). Use Eq. (8) to expand f (g,, g.) with respect to each
variable, separately, as follows:

£(0,8:) =f(0,8.) D [f (1, 2:) Bf (0, g:)] g
£(0,g:) = (0,00 [f(0,1)Df(0,0)] g
f

f(1,8)=f1L0OD[f(1,1)Bf(1,0]g.

Substituting the second and third equations into the first,
yields the formula

flg, &) =f(0,0)D ﬁf' g0 B1
S? ﬁﬂ g0 B2 b yhAgZZ)f'glgz 9)

Il
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Formula (9) can evidently be generalized to k variables
(Ref. 2).

Take the difference of both sides of Eq. (9) with respect
to u, then

%f = ﬁflﬂ'::O "8 GBZ}H 9120 .%gzea yﬁhm f.% (gng)(lO)

since f (0,0) and the coefficients of g;, g, and gg. are in-
dependent of u. But by Rule IV

A(818.) = (881)° 8. D & " (4g.) D (4g1) (48:)

Substituting this in Eq. (10) and collecting coefficients, we
obtain

af =(afl, D AP f g)re
EB (,Aﬂ 91=0 EB g%zsz. gl)Ag2 @ ax,Ay(zz)f.Agl "Ag:

The theorem for k = 2 is proved once expansion (8) is
used to identify the coefficients of Ag, and Ag, with ﬂAf

and gAf, respectively.

The above theorem and previous rules provide an ade-
quate machinery for calculating partial differences. In the
classical difference calculus there are existence theorems
associated with certain classes of difference equations and
boundary conditions. Similar theorems can be proved for
the present difference calculus of Boolean algebra. An
example of such a theorem is the next one. This theorem
provides a “global” criterion for the existence of test con-
figurations x° and x* which satisfy both the “boundary”
condition

(1) u(=*) =k
and the difference equation
@) af (xu() =1
of Theorem 2.
THEOREM 4. There exist two test configurations x° and x”,

satisfying (1) and (2) of Theorem 2 if and only if functions
u(x) and f(x,u(x)) are such that

(3) ()" & f(x,u)5£0
(4) u(x)-af(xu) #0.

Proof: If (1) and (2) of Theorem 2 are true, then
u (x°) Af (x°,u) = 1 and u (x?) %f (x*,u) =1 and (3) and (4)
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hold. Conversely if (3) is true, there exists x° such that
u(x%) *Af (x%,u) = 1. But this implies (1) of Theorem 2.
Similarly (4) implies (2) of Theorem 2 and theorem is
proved.

IV. Example and Remarks

Let f be the switching circuit of Fig. 1. f is a circuit of
four primary input variables x;, x,, 5, and x, with circuit
equations given by Eq. (1). '

As an application -of Theorem 2 we will find test con-
figurations x* = (x%, x%, 2%, %) fork = 0,1 which will test
for a fault in gate 4. To do this we must compute the par-
tial difference Af and set it equal to one. This is done using

the chain rule of Theorem 3 and the difference calculus
rules of the last section as follows:

Af = Ag- 4f,

of = 826 Daf 20D A7 28

!IAlf - g2, OA'.-f - gl’ glAgZ = 1
§g1 = X1, egz = X4
%g = X1Xs

Thus we want to find x* for x = 0, 1 such that
u(x¥) =k
Af = Age 9f =1
where
%g = X1X4
9f = go* %, P gix: P x174
This implies x* = (a%, 2%, 2%, %) must satisfy
u(x®) =k (1L
Ag =22, = 1

ef = 8% @ 8:1X2 @ %, = 1
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These two configurations are displayed in two rows of the
incompleted Table 1. Note that relation x,x, =1 and
u(x*) = kfork = 0,1 are already satisfied in Table 1. It
remains to complete the table, using Eqgs. (1), and to show
that ef = 1 can be satisfied.

Table 1. Incompleted table of test configurations
for gate v

Xy b &3 X3 b 23 v g g1 g2 f

1 1 0
1 1 1

X4 v g A g2 f

1 1 1 1 0 1 0 0 1
1 — —_ 1 1 0 1 1 0

A completed table of test configurations for gate u is
shown in Table 2. The two blanks in the table may be
filled with elements of the set

{(22, 5) | %225 = 0}

The solutions of conditions (1) and (2) are not always
unique. For this example the test configuration,

= (20,2820 20) = (1,1,1,1)

is unique and the configuration x* is not unique and can be
chosen to be

xt = (xbaLakxl) =(1,0,0,1)

To test for the presence for a fault in any primary input,
internal gate, or output one applies Theorem 2 repeatedly,
finding test configurations for all such variables. A minimal
set of test configurations is obtained by taking minimal
union over the set of all test configurations. If n is the
number of variables to be tested, the minimal set never
exceeds 2n test configurations.
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